Ini. J. Solids Structures Vol. 34, No. 27, pp. 3571-3582, 1997
@ Pergamon {1997 Elsevier Science Ltd

All rights reserved. Printed in Great Britain
PI1: S0020-7683(96)00209-0

0020-7683/97 $17.00 + .00

INCLUSIONS AND INHOMOGENEITIES IN
TRANSVERSELY ISOTROPIC PIEZOELECTRIC SOLIDS

MARTIN L. DUNN and H. A WIENECKE
Center for Acoustics, Mechanics and Materials, Department of Mechanical Engineering,
University of Colorado, Boulder, Colorado 80309-0427, U.S.A.

(Received 16 January 1996 ; in revised form 23 September 1996)

Abstract—We analyse the electroelastic fields in and around inclusions and inhomogeneities in
transversely isotropic piezoelectric solids nsing Eshelby’s pioneering approach. Following a brief
review of the general theory, we obtain explicit, closed-form expressions for the four tensors that
are the piezoelectric analog of Eshelby’s tensor for spheroidal inclusions in a transversely isotropic
piezoelectric medium. We focus on no specific problem pertaining to piezoelectric inclusions and
inhomogeneities, but instead provide an easily-used general solution. The explicit expressions for
the four tensors can be used, in the same manner as Eshelby’s tensor for elastic inclusions, to solve
a wide range of problems in the mechanics and physics of heterogeneous piezoelectrics. © 1997
Elsevier Science Ltd.

1. INTRODUCTION

Eshelby’s (1957, 1959) classical analyses of the stress and strain fields in elastic solids
containing ellipsoidal inclusions and inhomogeneities are widely recognized both for their
elegance and wide-ranging applicability. Indeed, Eshelby’s method and his results serve as
the cornerstone of many contemporary micromechanics studies of defects, fracture, and
the behavior of heterogeneous media at various length scales. Numerous examples of and
references to such applications can be found in the texts of Mura (1987) and Nemat-Nasser
and Hori (1993). Eshelby provided many useful results including : demonstration of the
uniformity of stress and strain fields in ellipsoidal inclusions with uniform eigenstrains and
ellipsoidal inhomogeneities subjected to uniform far-field loads, the equivalent inclusion
method, and simple, efficient methods for energy calculations. Perhaps the most widely-
used result of Eshelby’s analyses is his simple, closed-form expression for what is now
known as Eshelby’s tensor: a fourth-order tensor which is a function only of the elastic
moduli of the matrix and the shape of the inclusion. In fact, with the explicit expressions
for Eshelby’s tensor in hand, solutions to many problems concerning inclusions and inhom-
ogeneities are reduced to algebraic tensor manipulation. While Eshelby only provided
explicit results for inclusions in isotropic solids, he laid the groundwork for the study of
inclusions in anisotropic solids. Subsequent researchers (Hill (1971), Willis (1964), Walpole
(1967, 1977), Kinoshita and Mura (1971), Lin and Mura (1973), Asaro and Barnett (1975),
Bacon et al., (1978), among others) provided valuable results regarding inclusions in
anisotropic matrices. The key component, Eshelby’s fourth order tensor, was expressed in
terms of surface integrals over a unit sphere or line integrals along a unit circle. As no
closed form expressions were obtained, Eshelby’s tensor had to be computed by numerical
integration (see, for example, Gavazzi and Lagoudas, 1990). Only for transversely isotropic
solids are analytical results for Eshelby’s tensor available (Withers, 1989 ; Yu et al., 1994).
It is not surprising that the use of Eshelby’s tensor for anisotropic solids pales in comparison
to its use for isotropic solids. There are probably two reasons for this: isotropic materials
play a more prominent role in technological applications than anisotropic ones, and aniso-
tropic analysis is often considered to be somewhat more complex than isotropic analysis.
When dealing with piezoelectric solids, transverse isotropy is of fundamental import-
ance : the most technologically-important piezoelectric materials are poled ceramics which
exhibit transverse isotropy with the unique axis aligned along the poling direction. Piezo-
electric inclusions and inhomogeneities have been studied by numerous researchers (Deeg,
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1980 ;: Wang, 1992 ; Benveniste, 1992 ; Dunn and Taya, 1993 ; Chen, 1993a, b). Decg, Dunn
and Taya used a direct generalization of Eshelby’s elegant approach, while Benveniste and
Chen generalized the approaches of Walpole (1967) and Hill (1961). Nevertheless, they all
obtained expressions (although none in closed form) for the four tensors that comprise the
piezoelectric analog of Eshelby’s tensor in elasticity. Dunn and Taya obtained expressions
for these tensors in terms of surface integrals over the unit sphere which they evaluated
numerically, and Dunn (1994) obtained closed-form expressions for the tensors in the case
of elliptical cylindrical inclusions in transversely isotropic solids. To date, however, no
closed-form expressions have been obtained for the piezoelectric Eshelby tensors for sphe-
roidal inclusions (which can simulate inclusion geometries ranging from thin disks to long
needles) in transversely isotropic solids. The development of such expressions is the objective
of this study.

To this end, the basic equations of linear piezoelectricity, a convenient shorthand
notation, and a brief review of the solution of inclusion and inhomogeneity problems in
piezoelectric solids are given in Section 2. The main ingredients of the present solution, the
piezoelectric Green’s functions, are presented in Section 3. In Section 4 we define and then
derive explicit closed-form expressions for the piezoelectric Eshelby tensors for spheroidal
inclusions in transversely isotropic media. These expressions can be trivially simplified for
the cases of disk-shaped, spherical, and needle-shaped inclusions. Our approach proceeds
in a manner that parallels Eshelby’s derivation. This is a departure from most analyses
involving anisotropic media, and all approaches involving piezoelectric media, which make
use of transform formalism and yield results in terms of surface integrals over the unit
sphere. We emphasize that the intent of this work is not to study any one particular aspect
of piezoelectric inclusions and inhomogeneities in detail. Rather, we explicitly provide the
general solution ; specifically, the piezoelectric Eshelby tensors which can be used with the
standard Eshelby approach. Our results can be easily and immediately used by researchers
interested in pursuing specific applications.

2. INCLUSIONS AND INHOMOGENEITIES IN LINEAR PIEZOELECTRICITY

In this section we review the basic equations of linear piezoelectricity and the analysis
of inclusion and inhomogeneity problems in piezoelectric solids ; our explicit expressions
for the piezoelectric Eshelby tensors can be easily used with these. Most of the equations
presented in this section have appeared in the literature, thus we omit derivation and
provide appropriate references. We consider an ellipsoidal inclusion or inhomogeneity
and focus on the uniform (Deeg, 1980) interior electroelastic fields. We do not treat the
complicated electroelastic fields outside the inclusion or inhomogeneity (except just at the
boundary). It is the interior fields that are most important, as with them alone we can
tackle many problems in heterogeneous media.

Basic equations

A three-dimensional cartesian coordinate system is employed where position is denoted
by the vector x or x; In this paper, both indicial x; and cartesian x, y, z notations are
utilized. For stationary behavior in the absence of free electric charge or body forces, the
field equations of linear piezoelectricity consist of the constitutive equations, the divergence
equations (elastic equilibrium and Gauss’ law), and the gradient equations (strain-dis-
placement and electric field—potential relations). In full index form these are:

= Cijmnemn - em'jEn

O',-j
Dl’ €imnEmn + KinEn (1)

Di,i =0 (2)



Transversely isotropic piezoelectric solids 3573
1
&y = 5(”1,;‘*‘ Uj;)
E=—¢, (3)

In eqns (1)-(3), 0;;, &; and u, are the elastic stress, strain, and displacement, respectively ;
D,, E; and ¢ are the electric displacement, field, and potential, respectively ; Cj, €5, and
Kk, are the elastic stiffness tensor (measured in a constant electric field), the piezoelectric
tensor, and the dielectric tensor (measured at a constant strain), respectively. The symmetry
conditions satisfied by the electroelastic moduli are given by Nye (1957), and C,;,,, and «,,
are positive definite.

In linear piezoelectric analysis, it is convenient to treat the elastic and electric variables
on equal footing. To this end, the notation introduced by Barnett and Lothe (1975) is
utilized. This notation is identical to conventional indicial notation with the exception that
lowercase subscripts take on the range 1, 2, 3, while uppercase subscripts take on the range
1, 2, 3, 4. With this notation, the field variables take the following forms:

U. — Uy, 7 _ Eun 5 Com M=123 @)
e T @ MDD, M=4

The electroelastic moduli are expressed as:

Cijmn J’M = 192’3

b _Jew =123 M=4 .
T Y e J=4; M=123

K M =4

With this shorthand notation, the constitutive equations can be written as X, = E 3, Z s,
Ten material constants are required to describe a transversely isotropic piezoelectric solid
with the x; (z) axis normal to the plane of isotropy : five elastic (Cy,, C3, Ci3, Cags Ces), three
piezoelectric (e, €33, €55), and two dielectric (k,,, k33). Here we have employed the well-
known Voigt two-index notation.

Piezoelectric inclusions and inhomogeneities

Consider an infinite piezoelectric solid D containing an ellipsoidal inclusion denoted
by Q with surface |Q}. The inclusion has the same electroelastic moduli, E,,, as the
matrix, but undergoes a uniform electroelastic transformation (which may, for example,
be associated with the spontaneous polarization and deformation that occur during a
crystallographic phase transformation). We denote by Z3%, the uniform transformation
that would occur if Q were unconstrained by D. To calculate the actual (constrained)
electroelastic fields, the imaginary cutting, straining, and welding operations of Eshelby
(1957) can be utilized. As has been shown by Deeg (1980), Benveniste (1992), and Dunn
and Taya (1993), we can express the uniform (because of the ellipsoidal shape) stress and
electric displacement in the inclusion as:

Zl’.l = EiJMn[ZMn_Z:’t!n]- (6'

Due to linearity, the strain and electric field in the inclusion can be expressed in terms of
Z%, by the introduction of the piezoelectric Eshelby tensors Sy, :

ZMn = SMnAszb' (7)

Formally, Si.4 is a collection of four tensors: one fourth-order, one second-order, and
two third-order. S,,.., is a function only of the electroelastic moduli, the shape of the
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inclusion, and the orientation of the inclusion relative to the principal material axes. If the
Eshelby tensors S, are known, then for prescribed eigenfields Z%*,, the constrained
electroelastic fields in the inclusion can immediately be computed with eqns (6) and (7).
Equation (7) and the forthcoming results are based on the idea of a transformation strain
and potential gradient, i.e. Z%,. In many cases, it is more convenient to deal with the
transformation stress and electric displacement X% or a combination of Z%¥, and X*. An
example is in the analysis of crystallographic phase transformations in piezoelectric solids.
The unconstrained phase transformation is accompanied by a spontaneous strain and
polarization. These can be directly represented by transformation quantities: the former
by &%, and the latter by D}, and their incorporation in the analysis is straightforward.

Once the solution for the ellipsoidal inclusion (a transformed region with the same
electroelastic moduli as the matrix) is obtained, the solution for the ellipsoidal inhomo-
geneity (a region with different electroelastic moduli than the matrix) easily follows. As
shown by Eshelby (1957) in the elastic case and Deeg (1980) in the piezoelastic case, the
inhomogeneity can be simulated by an equivalent inciusion. To fix ideas, consider the
infinite piezoelectric solid D with electroelastic moduli £, which contains an ellipsoidal
inhomogeneity Q with electroelastic moduli E},,,. In the absence of an applied electrical or
mechanical load, the electroelastic fields in both the inhomogeneity and matrix are zero.
When subjected to a far-field uniform load I, the stress and electric displacement in the
inhomogeneity, £, +X,,, can be written as:

Z?J+le = Ei.#;A’I/In[ZR/In_i—ZMn] = EiJA/!n[Zg/!n—'—ZAMn_ZtIn]' (8)

In eqn (8), Z,, is the uniform strain and potential gradient that would exist in the absence
of the inhomogeneity (XY = E;;3,Z 3,) and Z,,, is the disturbance of the uniform fields due
to the presence of the inhomogeneity. The first right-hand side of eqn (8) represents the
stress and electric displacement in the actual inhomogeneity while the second one represents
the stress and electric displacement in an inclusion of the same shape and orientation as the
inhomogeneity and with eigenfields Z%,. i.e. an equivalent inclusion. The simulation of the
inhomogeneity by the equivalent inclusion is possible if an appropriate Z%, can be found
to enforce the second equality of eqn (8) (where eqn (7) holds in the equivalent inclusion).
Substituting eqn (7) into eqn (8), and solving for Z%, gives

Zﬁq = - A I:q:J[E;.kIMn - EiJ,’bIn]Zf;dn ‘\9)

where A4 = [Edsm — Eianl Ssnas + Eipas. Once Z3,(Z5,,) is obtained from (9), it can be
used with eqns (7) and (8) to obtain the electroelastic fields in the inhomogeneity due to
the applied electroelastic load. Thus the inclusion is equivalent in the sense that (for an
eigenfield history Z},(Z3,,)) its electroelastic field history mirrors that of the inhomogeneity.
It is evident from eqns (7)—(9) that the problem of determining the electroelastic fields in
an ellipsoidal inclusion or inhomogeneity is reduced to the problem of determining the
piezoelectric Eshelby tensor for an ellipsoidal inclusion.

An inhomogeneous inclusion is an inhomogeneity with prescribed eigenfields Z7,.
Consider the infinite piezoelectric solid D with electroelastic moduli £,,,, which contains
an ellipsoidal inhomogeneity Q with electroelastic moduli E%, and eigenfields Z7,. The
stress and electric displacement in the inhomogeneous inclusion are :

?J + Zu = Ei.ﬂ;Mn [ZMn - le\:ln] = Eintn [ZMn - Z;n. - Zi}i‘] = Eistn [ZMn - Zi}n]' (10)

Ineqn (10) Z%, = ZL, + Z%* where Z§¥ are fictitious eigenfields and Z,,, = Sy,.Z%:.

The above results for the interior electroelastic fields can be used to obtain the elec-
troelastic fields just outside an inclusion (and thus of course for an inhomogeneity) by
making use of the continuity conditions on Z,, and the jump conditions on U, at the
inclusion-matrix interface. The fields just outside the inclusion can be expressed as (Dunn
and Taya, 1994) :
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20 = Z0 4+ Eyxl— EpQMan{}nK@}npn/*Z%]- (1)

In eqn (11) the interior fields X} are obtained by the approach discussed above and K4 is
the inverse of K, = Ky, = nn,E, i, where n; is the outward normal from the inclusion
surface.

To conclude this section we discuss some energy calculations. Consider a piezoelectric
solid containing an inhomogeneity subjected to far-field electroelastic loads X, n,. These
loads would result in a uniform fields £, in a homogeneous solid. The total free energy of
the inhomogeneous piezoelectric solid can be expressed as:

1 0770 1 4] E 0 Q
W=s5| Z5U%dV+ 5| ZhZ5dV—| ZinUSdS (12)
D “=Ja S

where V and S denote the volume and surface, respectively, of the piezoelectric solid and
Q denotes the volume of the inhomogeneity. The first two terms represent the sum of the
elastic and electric energy, while the last term is the potential energy due to the loading
mechanism. The interaction energy between X, n, and the inhomogeneity is then:

1 i
AW = W—W° :-4 ZE}Z}‘;dV—JZ?,n,-U,dSz — 3ELZ3Va (13)
Q S

where the volume of the ellipsoid is Vo = na,a,a;. Other energy expressions can be readily
calculated from these results.

3. INFINITE-BODY GREEN’S FUNCTIONS

In linear piezoelectric solids, the electric and elastic response is anisotropic and coupled.
Formally, four Green’s functions G,,(x —x") exist which describe the elastic displacement
and electric potential at x due to a point force f; and point charge Q at x” (Deeg, 1980;
Dunn and Taya, 1993) : defining F, = (f1. /5. /5 —Q), we have U,, = G, F).

We recently derived explicit, closed-form expressions for the infinite-body Green’s
functions for a transversely isotropic piezoelectric solid (Dunn and Wienecke, 1996). Using
the boundedness conditions of that paper we recast the Green’s functions into an equivalent
form more suitable for the integrations that follow (reverting to x, y, z notation)

o _p XRi-ya & PRI
DT R, AT ()R,
X+ 422 &, w4277
G, =G, = o~—2—.“—+2 D, T2, @
(2+3)R, S X"+ R
3 Xz 2 Xz
Giy=Gy =y =Bl ~————=) —DA — —
' H i:zl (x> +)°)R, "; (x> +¥*)R;
3 XZ; i & XZ;
Gio =Gy = ¥ AA" —— = Y =Dt —
' 4 ,-:21 (x*+)yHR, = (x* +y")R,;
5 2.2 3 2 2 2.2
y°Ry—x"z;5 CXTRP—y7z
G 2 = - DIA’ZM 9
2= e, AP iR
3 . vz, 3 'Zy
G73 :G'iZ — Z_Bi/’?‘ hd = Z_D w .}
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3
YZzi
Gry=Gyy = Y A — —
o ; (x +y MR, ; (x +3)R,

3 1

G33 = Z;Br;ﬁ E
3

G34-—-G43—Z A/t T Z /L.¢_

3 1

i=1 R,

In these equations we have set the source point at the origin. The position-dependent terms
in eqn (14) are:

z; = v,z. (15)

The rest of the terms are functions only of the ten material constants describing a trans-
versely isotropic piezoelectric material and are given as follows:

I (vi=DHi-Di—1)
Ampe vy (v =) (v —v3)

1 =

1 5 fr2 e quv
By = 3- (= D25 03 = ) =28 (63 = )]

a

1
D, = 4nCuav,
@ _ w
D, = 1 (A%45 — 2348 ) (16)

4my, Cyy

The constants A4, (B,, D;) and 4; (B;, D;) are obtained from A4, (B,,D,) by cyclically
permuting the indices 1, 2 and 3 and:
= (vi — DAY (nsns —ning) + (vi — 1)A5 (5§ —nins) + (v — DAS (nfng —ning)
9o = (K11 —K33)[C11(Cas — C33) + Caa(C33 +2C3) + C33]14+ Cy (33— 5)?
+ Cyslesy +e15)2 —Cualess +e3,)° +2C 5[e s(es + ey —es3) —exzes]
P, = Vi AE(ALAY —2805) + v AP (AT25 — AZAY) +va A (A4 — ATAY) (17)

nf = 2[A(Cis+ C44Vi2) F+ VA (Caa — Cs3) +Vi;t?(e|5'e33)]
B = 2[— A0 (e sV +e3)) VAl (ess —eys) +vidf (K, 1-K33)] (18)

A = [(C15+ Cya)ess —Csales, +615)]Vr3 +(Caaes, —Cise45);
A= “C44933V?—[931(C13 +Cas)—e33Chy ‘f‘elscw]viz”‘elscn
/1¢ = C44C33V?+[C13(C13 +2C44)“C|1C33]V1'2’+‘C44C11 (19)

Vo = «/ Cys/Cas and —1/v?, —1/v3, and —1/v] are the roots of the cubic equation:
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b
s3+§s2+(—l,s+§= 0 (20)

where :

a=C, (k) ,Cs3+2e533) =K1, C13(C134+2C43) + Cas(ic33C +e3,) —2e,5C15(ex, +e55)

b=Cyi, 1 Cou+x33C +e5, (5 +€5)]— Cr3k33(Crs +2C44)
+(e3;+es)(Crze s —2C 3€31) +e33(C 33 —2C,,e5,)

¢ = Cuy(k33C53 +35)

d= Cll(K11C44+e%5)~ 2D

4. ESHELBY TENSORS

This section contains the principal results of our work : the derivation of the Eshelby
tensors for spheroidal inclusions in transversely isotropic piezoelectric solids. To obtain the
closed-form expressions for S, we start with the following expression for the dis-
placement and electric potential in a transformed inclusion (Dunn and Taya, 1993):

Uun(x)

JJGM}(X —x)Z¥n,dSx) — “‘J‘Gm(x —xHZk, dV(x)
O

|Q!

= - EiJAijbJ’J‘J‘GMJJ(X —x)dV(x’) (22)

where the differentiation is with respect to x. In the following we will differentiate U,, with
respect to x to obtain the strain and electric field, focusing on points x in the inclusion. We
will simplify and evaluate the volume integral in a manner analogous to that used by
Eshelby (1957) and Withers (1989) for elastic inclusions.

For x in a convex inclusion we can express the differential volume element as
dV(x’) = dr dS = r* dr dw in terms of the surface element d.S and the solid angle dw where
r=|x"—x|. It is useful to express E,.,,Gpy{Xx—Xx") in terms of a unit vector
=X —x)/|x"—x]|:

E;9mn(D)

2
r

E;Gup(x—Xx) = — (23)

where g,,,(1) is simply the restriction of G, (x —x’) to the unit sphere and where the change
of sign arises because G, (x—x’) is an odd function. Substituting eqn (23) into eqn (22)
yields

Uu(x) = ZﬁbJijUAbgMﬁ(l) drdow. 24

Q

Integrating with respect to r yields
Unu(x) = ZﬁbJEUAbgMﬁ(])r(l) dw (25)

where r(I) defines the boundary of the convex inclusion. For an ellipsoidal inclusion r(I) is
given by the positive root of



3578 M. L. Dunn and H. A. Wienecke

(-’(1"”’11)2 + (-’(2+’lz)2 + (X3+"l3)2

2 2 2
@ 5 a;

=1 (26)

where the cartesian coordinates x” are chosen so that the ellipsoid is centered at the origin
and aligned with the coordinate axis. Thus

f fz 6’)]"2
ry = —=4+|—+— 27
U] P 2ty (27
with
x x5 x2 Lx, hLxy, Lx 3 B B
e=1—<%+ ;+—f) f= ST g= (28)
ay a;  a; ay a; a; ai  a; a;

In eqns (26)—(28) a, are the principal half-axes of the ellipsoid along the x| direction. Since
951 is odd in land the quantity (f*/g°+e/g)"? is even in 1, their product will integrate to
zero. Taking this into account and substituting eqn (27) into eqn (25), U,, can be expressed
as

AsE i angms(l) d
——dw

29
p (29)

Up(x) = x, 2%, J’

where

—1, =1, —1
A:(l, 2 5) (30)

a @ &
We can now differentiate eqn (29) to obtain the displacement and potential gradients:

ArE g ang arsi(D) d
— A

U{W.r = Zij‘
g

3

Due to linearity we express the strain and potential gradient in terms of a set of piezoelectric
Eshelby tensors as:

Z[tln = S/V!nAijh' (32)

The set of four tensors S,,, 4 are thus defined by

IJ\A”EiJAhngi(l) + 2 Eiangnn(l) do M=1273
2 g
Satnap = . . >
dew M =4
g

We remind that the integrals in eqn (33) are over the unit sphere. The task at hand now is
to evaluate these integrals in closed-form.

We evaluate the integrals in eqn (33) under the assumption of a spheroidal inclusion
(a, = a,) where the a; axis is normal to the plane of isotropy. This case is quite important
as the spheroidal inclusion can model a wide range of microstructural geometry including
thin disks, spheres, and long needles. We are now faced with evaluating integrals of the
form
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AnGarr(D) do.

4
g (34)

Satniy = [

v

These integrals are closely related to Eshelby’s /(i) integrals for elastic inclusions. To
evaluate the integrals we write the unit vector 1 as 1 = (sin ¢» cos 8, sin ¢ sin 0, cos ¢p) and g
and 4 as:

aisin’¢ +aicos’ ¢ . singcostl singsinf cosg
g = -~ )= —, — . (35)
ayaz aj ajy as
Upon making these substitutions, eqn (34) can be expressed as:
= [ [ gun(Datas sin
Tatnis = j J QGG 4 (36)
o—0 Jo—o a; (a3 sin” ¢+ ay cos® ¢)

The integral over 6 is easily evaluated and that over ¢ is evaluated after making the
substitutions tan¢ = v, tanf as done by Withers (1989). All of the integrals that arise in the
evaluation of eqn (33) are of the form of eqn (36) and can be evaluated with the same
substitutions.

After evaluating these integrals and performing the tensor sums prescribed in eqn (33),
we obtain explicit expressions for the Eshelby tensors. Specifically, the non-zero components
are:

St = 82222. 81122 = 822115 81133 = 82233, 81143 = Soaas

S3311 = 83322, 833335 S3343

Sarz = Sa1a1 = Saz2z = Sa232, 54141 = Sanaz. Sazn = S4322,S4333.S4343
Si212 = 81221 = S2112 = S0

Si313 = 8130 =S5 = S3131 = 85323 = Sy330 = 53223 = Sszzza

Siza1 = S3141 = S2342 = Saza2-

Explicit expressions for these are:

Sll]l

3 1
—Ce Do, (0)+ Z |:22}‘"<— CiviBi+(Cy — 5 Css)D,>—2€31;11¢ViDz:|J1 (1)
i=1

3 3
S22 = Cee Do (0) + Z [Zl?v(_cl,?viBi_F(Cll - 2C66)Di>—2e31)'?viDi:|Jl ®
=1

1w

St = [2/1:‘”(-C33v1’Bi+C13Di)_2333;V?viDi]Jl (®
i=1
3
Stias = Z [2A?t'(_€33"fBi+€31D/)+2K33/11¢Vin]J1 )
i=1
3
Sl 212 & _C66D0J1 (O)+C66 Z ):szJl (1)
i=1

3
Si313 = CagvoDoJ,(0) — Z B:[C44(V1/1?V+A?)+€15/1§b]-]1 (0
i=1
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3
- Z [C44'ulr(viDi+Bi)+e15)~?Di]J2 ()
i=1
3
S1341 = €15v D, (0) — z Ble,s(viA" + 4y — k1, 2210, (D)
i=1
3
- Z [elsif'w(vai‘l“Bi)—KHA?Di]Jz(i)
i=1
3
S35, =4 Z B(Cse—Ci )" +e5,v,4¢ +C3vid 14, ()
i=1
3
Si333 =4 zB,~[—C,3)L;‘”+e33v,-/1?+C33v,-,1}”]J2(i)
i=1
3
S3343 =4 ZB,~[—e31/1,‘<‘"—K33v,-;tf’—+—€33v,-;t;“].]2(i)
i=1
3
Ssa =2 ZA?[eLSAi_C44(Bi+viDi)]Jl ()
i=1
3
Sara = -2 Zi?[KllAi+els(Bi+vin)]Jl ®
i=1
3
Sast1 =4 ) A[—e3 v, i+ CraviBi+ (Cos — C11) D)1 ()
i=1

3
Si33 =4 Z;'?[_333"[‘41‘—*_C33viBi_C13Di]J2(i)
i=1

3
S4343 =4 ZA?[K33viAi+e33viBi—eSIDi]JZ(i)
i=1

(37)
where :
J(@) = afa—ffW}anh_l(j‘%i>—Vﬂ v,-zocz—l—
i =(0 - 3,nosum). (38)
L () = @z—i—l)? :v,-octanh‘ ! (———'vi:;_l>— vig? — 1:

In eqn (38) we have defined the aspect ratio o = a,/a;. J,(i) and J,(i) are valid for both
oblate and prolate spheroids and in general are complex. Sy, however, are always real.
J,(i) and J,(i) correspond to Eshelby’s and Withers’ /,(¢) and 1,(i) for elastic inclusions. In
fact J,(i) = —I,({)/2 and J,(i) = v.L,(i)/4. The 1,(i) and L (i) for elastic inclusions are usually
written in two forms: one for prolate spheroids and one for oblate spheroids (and can be
so written here), but this is not really necessary. Simplified forms of /(i) and J,(i) for disk-
like, spherical, and needle-like inclusions easily follow as limiting cases of eqn (38).

We have verified the correctness of the S,,,,, given by eqn (37) by exhaustive com-
parison to results obtained by numerically evaluating the surface integral expressions for
Symap of Dunn and Taya (1993). We also showed that in the absence of piezoelectric coupling
(e; = 0), the Sy, Teduce to the results of Withers (1989), plus analogous expressions for
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transversely isotropic electrostatics. This limiting procedure requires considerable manipu-
lation and thus we only discuss it briefly. When ¢, = 0, one of the v, say »,, reduces to
V K11/K3; and v, and v, reduce to the well-known uncoupled transversely isotropic elastic
values. The first term in the three-term sum of the S,,, ,, then vanishes identically for M,
A=1,2,3, (i.e., the elastic components), and the remaining two terms reduce to the two
terms of Withers’ solution. Furthermore, from this point, one can use Withers’ analysis to
show that they then reduce to Eshelby’s (1957) results in the uncoupled isotropic limit.

To conclude, we comment on the numerical implementation of our solution, and in
particular the potentially problematic (but easily overcome) numerical aspects. For any
given values of the ten material constants we can always evaluate v;, A5, and nf. We can
also always evaluate the Ji(i) because their limits as vx — 1 exist. The only problems we
face in numerically evaluating either the Green’s functions or Eshelby tensors are those
combinations of material constants that cause 4, B;, or D, to become infinite. Examination
of the cubic eqn (20) shows that Re[v] > 0 which precludes v; = 0 or 1; = —u,. So the 4,
become infinite only if y, = 0 (which is equivalent to ¢; = 1 for some j > 0) or if v; = v, for
some j # k. Substitution of n} and then /¥ into B, shows that B, becomes infinite when A,
does and also when 4% = ¥ = ¢ = 0 for some j. The D, have no additional degeneracies.
Thus there are three degeneracies in the solution: (i) »; = 1 for some j > 0, (ii) ¢, = v, for
some j # k, and (iii) //* = A} = A% = 0 for some j. The first occurs when the material is
uncoupled and either mechanically or electrically isotropic. The second occurs when the
material is uncoupled and mechanically isotropic. The third occurs when the material is
uncoupled. All three can also occur under more general circumstances. It is important to
note that these degeneracies present no real obstacle to the practical application of the
solution. Even for a degenerate set of the ten material constants, a valid numerical solution
can be obtained by slightly perturbing one of the constants to remove the degeneracy.
Furthermore, we remind that our analytical examination of the uncoupled limit reveals
that our solution tends correctly to the uncoupled solution.

5. CONCLUSION

The principal results of this paper are the closed-form expressions for the four Eshelby
tensors for spheroidal inclusions in transversely isotropic piezoelectric solids. These were
obtained using our recent expressions for the infinite-body Green’s functions in transversely
isotropic piezoelectricity. The piezoelectric Eshelby tensors can be used (in the same manner
as Eshelby’s tensor for elastic inclusions) to solve a wide range of problems in the mechanics
and physics of heterogeneous piezoelectric media.
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